18v^2+67v+24=0

Simple and best practice solution for 18v^2+67v+24=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 18v^2+67v+24=0 equation:


Simplifying
18v2 + 67v + 24 = 0

Reorder the terms:
24 + 67v + 18v2 = 0

Solving
24 + 67v + 18v2 = 0

Solving for variable 'v'.

Begin completing the square.  Divide all terms by
18 the coefficient of the squared term: 

Divide each side by '18'.
1.333333333 + 3.722222222v + v2 = 0

Move the constant term to the right:

Add '-1.333333333' to each side of the equation.
1.333333333 + 3.722222222v + -1.333333333 + v2 = 0 + -1.333333333

Reorder the terms:
1.333333333 + -1.333333333 + 3.722222222v + v2 = 0 + -1.333333333

Combine like terms: 1.333333333 + -1.333333333 = 0.000000000
0.000000000 + 3.722222222v + v2 = 0 + -1.333333333
3.722222222v + v2 = 0 + -1.333333333

Combine like terms: 0 + -1.333333333 = -1.333333333
3.722222222v + v2 = -1.333333333

The v term is 3.722222222v.  Take half its coefficient (1.861111111).
Square it (3.463734567) and add it to both sides.

Add '3.463734567' to each side of the equation.
3.722222222v + 3.463734567 + v2 = -1.333333333 + 3.463734567

Reorder the terms:
3.463734567 + 3.722222222v + v2 = -1.333333333 + 3.463734567

Combine like terms: -1.333333333 + 3.463734567 = 2.130401234
3.463734567 + 3.722222222v + v2 = 2.130401234

Factor a perfect square on the left side:
(v + 1.861111111)(v + 1.861111111) = 2.130401234

Calculate the square root of the right side: 1.459589406

Break this problem into two subproblems by setting 
(v + 1.861111111) equal to 1.459589406 and -1.459589406.

Subproblem 1

v + 1.861111111 = 1.459589406 Simplifying v + 1.861111111 = 1.459589406 Reorder the terms: 1.861111111 + v = 1.459589406 Solving 1.861111111 + v = 1.459589406 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.861111111' to each side of the equation. 1.861111111 + -1.861111111 + v = 1.459589406 + -1.861111111 Combine like terms: 1.861111111 + -1.861111111 = 0.000000000 0.000000000 + v = 1.459589406 + -1.861111111 v = 1.459589406 + -1.861111111 Combine like terms: 1.459589406 + -1.861111111 = -0.401521705 v = -0.401521705 Simplifying v = -0.401521705

Subproblem 2

v + 1.861111111 = -1.459589406 Simplifying v + 1.861111111 = -1.459589406 Reorder the terms: 1.861111111 + v = -1.459589406 Solving 1.861111111 + v = -1.459589406 Solving for variable 'v'. Move all terms containing v to the left, all other terms to the right. Add '-1.861111111' to each side of the equation. 1.861111111 + -1.861111111 + v = -1.459589406 + -1.861111111 Combine like terms: 1.861111111 + -1.861111111 = 0.000000000 0.000000000 + v = -1.459589406 + -1.861111111 v = -1.459589406 + -1.861111111 Combine like terms: -1.459589406 + -1.861111111 = -3.320700517 v = -3.320700517 Simplifying v = -3.320700517

Solution

The solution to the problem is based on the solutions from the subproblems. v = {-0.401521705, -3.320700517}

See similar equations:

| t=10+(n-40) | | a+82=332 | | x^2+8x+22x=-15 | | n+1.32=3.16+6.2n-4.8n | | Y=(x-7)2+8 | | 5/2x-3/7 | | y=-(14/3)x | | 5+6s-2=9s+27-6s | | x^2-1404x+33120=0 | | x^3+5x^3=4x+20 | | 2^7/2 | | 3x^2=-225 | | -4(n-4)=-2(3n+1) | | m^2+7m+9=m | | 5(3m+1)-8(2m+3)=-19 | | (1/8)d-4(3/8)d-4=5 | | 13x+11=8x+6 | | 3x*2=-225 | | x^3-6x^2+5x-1=0 | | y(10-3y^2)=40-3y^3 | | 0=12x^2+6x-6 | | 5x-1.7=8.2 | | Ln(4x+6)-ln(3)=12 | | 2x+2-2x=6 | | cos(x)=0.95 | | (P-5)(p+3)=0 | | 80/65-8/13x | | -5(-3n+4)+3=2(1-2n) | | [(-42)(-6)]/(3-7) | | 4p-6=10 | | 8=a/3 | | 2x(3x-6)+5x=6x^2+9 |

Equations solver categories